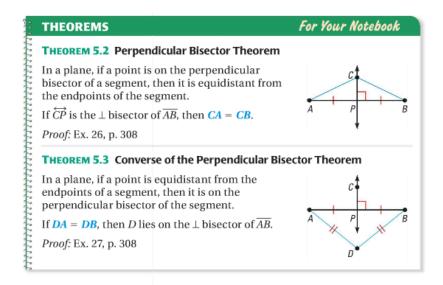
Chapter 5 Study Facts

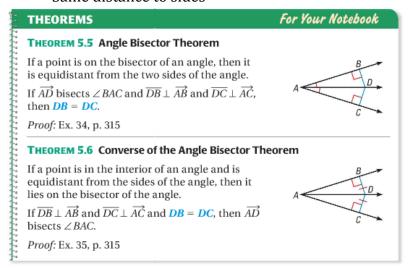
Perpendicular Bisector

- Bisects line Perpendicular to a segment at its midpoint
- 90°
- Doesn't have to go through vertex
- Point of Intersection: Circumcenter
- Same distance to all endpoints (vertices) from the circumcenter.



Angle Bisector

- Cuts angle in half
- Doesn't have to bisect line on other side
- Point of Intersection: **Incenter**
- Same distance to sides



Medians

- Vertex to midpoint of opposite side
- Bisects, not necessarily 90°
- Point of Intersection: Centroid (always inside)
 - From **vertex to centroid** is $\frac{2}{3}$ of the line

THEOREM

For Your Notebook

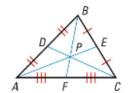
THEOREM 5.8 Concurrency of Medians of a Triangle

The medians of a triangle intersect at a point that is two thirds of the distance from each vertex to the midpoint of the opposite side.

The medians of $\triangle ABC$ meet at P and

$$AP = \frac{2}{3}AE$$
, $BP = \frac{2}{3}BF$, and $CP = \frac{2}{3}CD$.

Proof: Ex. 32, p. 323; p. 934



Altitude

- Vertex to opposite side
- Must have 90°
- Point of Intersection: **Orthocenter**
 - o Can intersect anywhere -
 - inside triangle acute
 - on line right triangle
 - outside triangle obtuse

THEOREM

For Your Notebook

THEOREM 5.9 Concurrency of Altitudes of a Triangle

The lines containing the altitudes of a triangle are concurrent.

The lines containing \overline{AF} , \overline{BE} , and \overline{CD} meet at G.

Proof: Exs. 29-31, p. 323; p. 936

